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In this paper we propose a generalization of the one-dimensional outflow dynamics �KD�. The rule is
introduced as a simplification of Galam dynamics �GD� proposed in an earlier paper. We simulate three types
of outflow dynamics, GD, Stauffer et al. dynamics, and KD, both on the square and triangular lattices and show
whether the outflow dynamics is sensitive to the lattice structure. Moreover, we took into account several types
of initial configuration—random, “stripes,” and “circle.” We investigate the dependence between the mean
relaxation time and the initial density p of up-spins for each type of initial conditions, as well as dependence
between the mean relaxation time and the size of the system. As a result, we show differences and similarities
between three types of the outflow dynamics.
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I. INTRODUCTION

The outflow dynamics was introduced to describe the
opinion change in society. The idea was based on the funda-
mental social phenomenon called “social validation.”

Under the outflow dynamics a system eventually always
reaches consensus, like in the famous voter model �1–3�.
Several other models describing opinion dynamics were in-
troduced by Deffuant �4�, Hegselmann and Krause �5�,
Krapivsky and Redner �6�, and Galam �7�.

In this paper, however, we do not focus on social appli-
cations of our model �for those interested, reviews can be
found in Refs. �8–11��. On the contrary, we investigate here
the dynamics from the theoretical point of view.

In this paper we pay particular attention to a generaliza-
tion of the one-dimensional outflow dynamics to higher di-
mensions. Several possibilities of such a generalization to the
square lattice were proposed by Stauffer et al. �12� �see Sec.
II� but only some of them were used in the later literature
�8–11�. In Ref. �13� we presented comparative studies of the
two most interesting generalizations out of all proposed in
Ref. �12�. Only slight quantitative differences have been
found between these two generalizations.

The outflow dynamics on the triangular lattice were con-
sidered only in one paper �14�. In this paper the author stud-
ied the generalization of the Sznajd model to the triangular
lattice with spreading of mixed opinion and with the pure
antiferromagnetic opinion—a pair of two neighboring spins
on a triangular lattice influenced its eight neighbors.

Up till now no studies on the influence of the lattice ge-
ometry, in the case of regular lattices, for spins endowed with
the outflow dynamics were provided. However, the influence
of the topology for the relaxation under the outflow dynam-
ics in a case of complex networks has been investigated in
Refs. �15–18�. In Ref. �15� the time evolution of the system
was studied using different network topologies, starting from
different initial opinion densities. A transition from consen-
sus in one opinion to the other was found at the same per-

centage of initial distribution no matter which type of com-
plex network was used. On the other hand, results presented
in Ref. �19� suggest that lattice geometry may influence the
network dynamics.

In a broad sense the notion of consensus in a network is a
particular case of what can be called coherence or full syn-
chronization between sets of coupled elements, subject to
some sort of local dynamics or updating rule �19,20�. In the
paper �19� the influence of lattice geometry in network dy-
namics, using a binary cellular automaton with nearest-
neighbor interactions, has been studied. It was shown that
geometric structures are more cohesive than others, tending
to keep a given initial configuration.

The first general question we pose in this paper is the
following: Is the outflow dynamics sensitive to the lattice
topology �like in the case of binary cellular automaton on
regular networks �19�� or not �as suggested in the case of
complex networks �15��? To answer this question we present
results for several types of the outflow dynamics on the
square and triangular lattices coming from regular studies on
the mean relaxation time.

The second question we pose in this paper is connected to
the differences between particular forms of the outflow dy-
namics. As mentioned above, several generalizations
�12,14–18� from one to higher dimensions were proposed,
but no regular comparative studies were provided. In Ref.
�13� we presented comparative studies of two types of the
outflow dynamics on the square lattice and we found no
qualitative differences. However, we did not check how the
results would change with a lattice topology or with the type
of initial conditions. To complete this approach we decided
here to treat the matter systematically. Moreover, we intro-
duce in this paper one more type of generalization of one-
dimensional outflow dynamics into two dimensions, which is
a simplification of one of the dynamics studied in Ref. �13�.
All three dynamics are simulated both on square and trian-
gular lattices. We start from different initial densities of up-
spins in several types of initial conditions. We measure the
mean relaxation time as a function of initial densities of up-
spins as well as the dependence between the mean relaxation
time and the lattice size. We show that in some cases univer-
sal scaling laws exist, while in others they do not.
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II. MODEL

In this paper we consider the generalizations of the one-
dimensional outflow dynamics to higher dimensions. Let us
begin with recalling the one-dimensional outflow dynamics,
described in detail in Ref. �21�. In the original model �22� the
pair of neighboring spins Si and Si+1 have been chosen and if
SiSi+1=1 the two neighbors of the pair followed its direction,
i.e., Si−1→Si�=Si+1� and Si+2→Si+1�=Si�. Such a rule has
been used also in all later papers dealing with the one-
dimensional case of the model. However, the case in which
SiSi+1=−1 was noted as far less obvious. Several possibilities
has been proposed up till now and in general one-
dimensional outflow dynamics can be written as �21�:

Si�� + 1�

= �1 if Si+1��� + Si+2��� � 0,

− Si��� with prob W0 if Si+1��� + Si+2��� = 0,

− 1 if Si+1��� + Si+2��� � 0.
�
�1�

The most known case is for W0=0 and also this case has
been generalized into two dimensions. Several possibilities
of such a generalization to the square lattice were proposed
by Stauffer et al. �12�. Six different rules were introduced,
but only the following two have been used in later publica-
tions: A 2�2 panel of four neighbors leaves its eight neigh-
bors unchanged, if all four center spins are not parallel �see
Fig. 1�; a neighboring pair persuades its six neighbors to
follow the pair orientation if and only if the two pair spins
are parallel.

With both these rules complete consensus is always
reached as a steady state. Moreover, a phase transition is
observed—initial densities below 1/2 of up-spins lead to all
spins down and densities above 1/2 to all spins up for large
enough systems �12�.

Galam �see Stauffer �12�� showed that the updating rule of
the one-dimensional SM can be transformed exactly into two
dimensions in the following way �see Fig. 2�: The one-
dimensional rule is applied to each of the four chains of four
spins each, centered about two horizontal and two vertical
pairs.

In Ref. �13� we compared two rules in which a panel of
four spins influenced eight nearest neighbors, i.e., Galam
�Galam dynamics �GD�� and the first of Stauffer et al. rules
�Stauffer et al. dynamics �SD�� on the square lattice. This
comparison seems to be quite important, since Stauffer et al.
generalization is more attractive from a social point of view,
while the Galam rule is much easier for generalization to
other systems �in particular, it was used in the so-called TC
model �23,24��. No qualitative difference has been found be-
tween these two dynamics.

Here we propose further simplification of the GD—the
one-dimensional rule is applied not to each but only one
randomly selected chain of four spins �see Fig. 3�. The one
invented by one of us �G.K.� and introduced here is the dy-
namics we call KD.

FIG. 1. Stauffer et al. dynamical rules of SM on the square
�upper panel� and triangular �bottom� lattice. On the square lattice a
2�2 panel of four neighbors �elementary cell� leaves its eight
neighbors unchanged, if all four center spins are not parallel. On the
triangular lattice a panel of three spins �elementary cell� influences
six neighbors along three chains of four spins each, centered about
the panel.

FIG. 2. Galam’s dynamical rules of SM on the square �upper
panel� and triangular �bottom� lattice. The one-dimensional rule is
applied to each of the four �on the square lattice� or three �on the
triangular lattice� chains of four spins each, centered about the el-
ementary cell.

FIG. 3. K dynamics of SM on the square and triangular lattice.
The one-dimensional rule is applied to only one, randomly selected
chain of four spins, centered about elementary cell.
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We compare all three dynamics �SD, GD, and KD� on the
square and triangular lattices. As in the previous paper �13�
we measure the mean relaxation time from an initial state
consisting of p up-spins. However, in this paper we consider
not only random initial configuration but also two types of
ordered initial conditions.

III. RELAXATION TIME FROM RANDOM INITIAL
CONDITIONS

We have measured the mean relaxation time from a ran-
dom initial state consisting of p up-spins for all three types
of the outflow dynamics on the square and triangular lattices
L�L using Monte Carlo simulations �we adopted here peri-
odic boundary conditions�. We have averaged the relaxation
time over 103 samples. It should be noticed that in SD �Fig.
1� and GD �Fig. 2� fmax=8 spins �on the square lattice� and
fmax=6 spins �on the triangular lattice� can be changed at
maximum in elementary time step, while only two spins can
be changed within KD �on both lattices�, i.e., fmax=2 �see
Fig. 3�. To compare relaxation times properly we have di-
vided them by fmax.

We have found the phase transition for all dynamics—for
p�0.5 the “all spins up” state is never reached, while for
p�0.5 this state is obtained with probability 1 �the same
result was obtained previously in Ref. �12,13� on the square
lattice�. Moreover, critical slowing down is observed at p
=0.5 �see Fig. 4�. For L→� we expect the ��0.5� function.

It is seen �Fig. 4� that for p=0.5, i.e., in the critical point,
GD is the fastest dynamics on both lattices, while KD is
definitely the slowest one:

�GD�0.5� � �SD�0.5� � �KD�0.5� . �2�

However from Fig. 4 this is not visible if the relation �4� is
valid also outside the critical point. If we look at Fig. 5 we

see that for p�0.5 the situation is completely reversed and,
in general,

�GD�p � 0.5� � �SD�p � 0.5� � �KD�p � 0.5� . �3�

We should now address a very intriguing question—why is
the dynamics which is the slowest in the critical point the
fastest outside this point and vice versa? Is it connected
somehow to a spatial structure which is created for a differ-
ent initial concentration p of up-spins? It can be observed
that for p�0.5 a concentration c�t� of up-spins decreases
very fast and after a short time �50–200 MCS� small compact
clusters of up-spins are created �Fig. 6�. On the contrary, for
p=0.5 initially concentration of up-spins does not change
significantly and only fluctuates around c�0�= p but the sys-
tem orders and after a short time �50–200 MCS� a large
cluster of up-spins is created �Fig. 6�

To check this hypothesis, in the next two sections �i.e., in
Secs. IV and V� we investigate the evolution of the system
under three outflow dynamics from the following two types
of ordered initial conditions. �1� “Stripes:” Initially, the sys-
tem is divided by the straight border into two horizontal
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FIG. 4. Comparison of mean relaxation times under three rules
�SD, GD, and KD� from a random initial state consisting of p up-
spins for two types of two-dimensional lattices—square �upper
panel� and triangular �bottom�. In each plot results for several lat-
tice sizes, from L=50 ��� to L=100 ���, are presented. It is clearly
seen that KD for p=0.5 is the slowest dynamics on both lattices.
Results are averaged over 103 samples.
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FIG. 5. Comparison of mean relaxation times under three rules
�SD, GD, and KD� from a random initial state consisting of p
�0.5 up-spins for a two-dimensional triangular lattice of 104 nodes.
It can be seen that KD for p�0.5 is the fastest dynamics among all
three dynamics. The same result was obtained also for the square
lattice. All results are averaged over 103 samples.

FIG. 6. Configurations of the system under outflow dynamics
�type KD� after 200 MCS from a random initial state consisting of
p=0.45 �left panel, present density of up-spins is 0.2513� and p
=0.5 �right panel, present density of up-spins is 0.5225� up-spins
for a two-dimensional square lattice of 104 nodes. The same results
are observed for all three dynamics.
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stripes—pL-width stripe of up-spins and �1− p�L-width
stripe of down-spins, i.e., p is again the initial density of
up-spins. �2� “Circle:” Initially, a single compact round clus-
ter of up-spins in the middle of the lattice consists of down-
spins; p is again the initial density of up-spins.

IV. RELAXATION TIME FROM “STRIPES”

In this section we investigate the relaxation of the system
under three types of outflow dynamics from the ordered ini-
tial conditions which we call “stripes”—initially the system
is divided by the straight border into two horizontal stripes:
pL-width stripe of up-spins and �1− p�L-width stripe of
down-spins, i.e., p is again the initial density of up-spins. For
“stripes” no phase transition is observed. Moreover, relax-
ation under GD is the fastest, while under KD it is the slow-
est among all three dynamics for all values of initial density
of up-spins p �Fig. 7�. The same result was obtained for
random initial conditions with p=0.5, i.e., in the critical
point �Fig. 4�:

�GD � �SD � �KD. �4�

As we have seen in the previous section for random initial
conditions and p=0.5 after a short time a large cluster of
up-spins is created �Fig. 6� for all three dynamics. Here we
can see that large clusters �stripes� are most unstable under
GD and most stable under KD. These results may explain
why relaxation from random initial conditions for p=0.5 is
fastest under GD and slowest under KD.

The second interesting result connected with the relax-
ation from “stripes” is the lack of the phase transition. How-
ever, this could be understood looking at the evolution of the
system’s configuration. In Fig. 8 snapshots of the sample
relaxation under SD on a two-dimensional square lattice is
presented. It is seen that relaxation from “stripes” is quasi-
one-dimensional in a sense that the structure of the stripes is
conserved, although the border between them is no longer
straight but rough. Evolution consists of movement of the

stripes, roughening the border between them and changing
the width of the stripes. Eventually, one of the stripes breaks
at one point to form a simply connected cluster and from this
moment the evolution leads the system very fast to the final
state with all spins in the same state. The same scenario was
observed for all three dynamics and for all values of p. It
should be mentioned here that “stripes” configuration is the
steady state of zero-temperature Glauber dynamics. Several
years ago the following question was raised by Spirin et al.
�28,29�: “What happens when an Ising ferromagnet, with
spins endowed with Glauber dynamics, is suddenly cooled
from a high temperature to zero temperature?” The first ex-
pectation was that the system should eventually reach the
ground state. However, this is true only for a one-
dimensional system. On the square lattice there exist many
metastable states that consist of alternating vertical �or hori-
zontal� stripes of widths �2. These arise because a straight
boundary between up and down phases is stable in zero-
temperature Glauber dynamics. As we see this is not the case
of the outflow dynamics under which the system eventually
always reaches the ground state. This result is certainly also
a contribution to the discussion about differences between
inflow �zero-temperature Glauber� and outflow dynamics
�see �21� and references therein�.

Thus the lack of the phase transition from “stripes” can
probably be explained by the absence of the phase transition
in one-dimensional outflow dynamics described by the for-
mula �1� �see also �21��. In Fig. 9 the mean relaxation times
from a random initial state consisting of p up-spins for out-
flow dynamics in one dimension with W0=0 is presented for
several lattice sizes. The case of W0 is consistent with defi-
nitions of our two-dimensional dynamics, i.e., under one-
dimensional outflow dynamics the pair of neighboring spins
Si and Si+1 is chosen and if SiSi+1=1 then the two nearest
neighbors of the pair follow its direction. It is seen that no
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FIG. 7. Mean relaxation times under three rules �SD, GD, and
KD� for a two-dimensional L�L square lattice �L=100, i.e., 104

nodes�. Initially the system is divided by the straight border into
two horizontal stripes: pL-width stripe of up-spins and
�1− p�L-width stripe of down-spins. Results are averaged over 103

samples.

FIG. 8. Snapshots of the sample relaxation under SD on a two-
dimensional L�L square lattice �L=100, i.e., 104 nodes�. Initially
the system is divided by the straight border into two equal horizon-
tal stripes. Here p=0.5.
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phase transition is observed. Moreover, the mean relaxation
time � perfectly scales with the size of the system L as �
�L2 for all p. The same scaling law has been obtained al-
ready for other one-dimensional consensus dynamics like
zero-temperature Glauber dynamics or voter model and can
be calculated analytically �1–3�.

The similarity between relaxation under one-dimensional
dynamics and relaxation under outflow dynamics from
“stripes” in two dimensions suggests the existence of a simi-
lar scaling law between the mean relaxation time ��	 and the
size N=L�L of the system also in two dimensions. The
mean relaxation times from “stripes” consisting of p up-spins
for several lattice sizes are presented in Fig. 10. It was ob-
tained that the relaxation time can be scaled with the sys-
tem’s size for all three dynamics with the same scaling ex-
ponent ��La, a
3.5 �see Fig. 10�.

V. RELAXATION TIME FROM “CIRCLE”

In this section we briefly present the results for the relax-
ation of the system under three types of outflow dynamics
from the ordered initial conditions which we call “circle”—
initially there is a single compact round cluster of up-spins in
the middle of the lattice consisting of down-spins. As we
have seen in Fig. 6 starting from random initial conditions
the evolution after short times creates small compact isolated
clusters. On the other hand, it was observed that for random
initial conditions and p�0.5 relaxation under KD is fastest,
while under GD it is slowest among all three dynamics.
Simulations from the “circle” type of initial conditions can
help in understanding this relation �see Eq. �3��.

In Fig. 11 we present the mean relaxation times under
three rules �SD, GD, and KD� for small two-dimensional L
�L triangular lattice �L=25, i.e., 625 nodes� in the case of
“circle” initial conditions consisting of pL2 up-spins �i.e., p
is again density of up-spins�. It can be seen that in this case
we have

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p

<
τ>

/L
2

L=103

L=4 × 102

L=102

FIG. 9. Mean relaxation times from a random initial state con-
sisting of p up-spins for outflow dynamics in one dimension are
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rection. It is clearly visible that in this case the mean relaxation time
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�1–3�. The results presented on the plot are averaged over 104
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FIG. 11. Mean relaxation times under three rules �SD, GD, and
KD� for a small two-dimensional L�L triangular lattice �L=25,
i.e., 625 nodes�. Initially there is a single compact round cluster of
up-spins of radius R
L�p /	 �the value of p=0.1 corresponds here
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�KD � �SD 
 �GD. �5�

This behavior is similar to the case of random initial condi-
tions with p�0.5, where KD was also the fastest one.

This result shows that small round clusters are more
stable under GD, contrary to infinite clusters �like stripes�
which are most stable for KD. Summarizing results for ran-
dom, “stripes,” and “circle” initial conditions, we obtain the
following:

�KD � �SD � �GD

“stripes” for all p and random initial conditions for p=0.5,

�KD � �SD � �GD

random initial conditions for p=0.5, and

�KD � �SD 
 �GD

“circle” for p investigated.

VI. IS THE SCALING UNIVERSAL?

It has been found both analytically and numerically that
dependence between the mean relaxation time � and the size
of the system L can be expressed by a simple scaling law
��L2 in the case of a one-dimensional voter model �1–3�.
The same scaling is valid also for relaxation in one dimen-
sion under zero-temperature Glauber �inflow� dynamics as
well as outflow dynamics �see Fig. 9�.

In two dimensions a situation is much more complicated.
It was found that for a two-dimensional voter model from
random initial conditions and p=0.5 the following scaling
law is valid: ��N log N �1–3�. However, this scaling law is
valid neither for two-dimensional inflow nor outflow dynam-
ics. It was observed �27–31� that for the Ising ferromagnet
with spins endowed with zero-temperature Glauber dynam-
ics there exist many metastable states that consist of alternat-
ing vertical �or horizontal� stripes of widths �2. If we start
from random initial conditions and let the system evolve
under inflow dynamics, we eventually reach the final
“stripes” configuration in 1/3 of the simulations �28�. Be-
cause a straight boundary between up and down phases is
stable in zero-temperature Glauber dynamics we will never
leave such a “stripe” state—for this reason the mean relax-
ation time is infinite. As we have seen in previous sections
�Secs. III and IV�, this is not the case for outflow dynamics
under which the system eventually always reaches the
ground state.

The question is whether the scaling law obtained for the
two-dimensional voter model is valid in the case of outflow
dynamics. Up till now we have found the scaling law for
systems endowed with outflow dynamics initially ordered in
“stripes” configuration �see Fig. 7�. In this case the mean
relaxation time � scales with the system size N=L�L as �
�Ł3.5 for all three outflow dynamics both on the square and
triangular lattice. However, this scaling is not valid in a case
of random initial conditions. It occurs that for random initial
conditions with the density p of up-spins we can find
p-dependent scaling laws: ��La�p� �see Fig. 12�.

As we see for consensus dynamics with binary variables,
scaling laws are universal in one dimension. It should be

mentioned here that all these results have been obtained in
the case of random sequential updating. It would be interest-
ing for future work to check whether the same scaling is
obtained for other types of updating such as, e.g., synchro-
nous or c-synchronous updating �21�.

Contrary to one dimension, even within the outflow dy-
namics no single scaling law can be found in two
dimensions—it depends strongly on the initial configuration
of the system. However, a very intriguing result connected
with scaling can be obtained if we look at the distribution of
relaxation times instead of mean relaxation time alone.

VII. DISTRIBUTION OF RELAXATION TIMES

In the mean field approach �25� and in a one-dimensional
system it has been found that the distribution of waiting
times has an exponential tail with a p-independent exponent.
Results for the square lattice for SD and GD were presented
in Ref. �13�. Under both dynamics the distribution of relax-
ation times has an exponential tail, but the exponent is
p-dependent. Interestingly, the dependence between the ex-
ponent and the initial number of up-spins is identical for both
dynamics. It should be mentioned here that in Ref. �12� it
was shown that for p=0.5 the distribution of relaxation times
deviates from the log-normal distribution for SD. However,
they plotted a histogram �i.e., an estimate of the probability
distribution function� instead of the cumulative distribution
function �CDF� and presented it in the log-log scale. In Ref.
�13� to compare our results with the results obtained in Ref.
�12� we calculated both the cumulative distribution function
�in fact, the tail 1−CDF� and the histogram of relaxation
times. It occurs that our results agree with those presented in
Ref. �12�. Already in Ref. �13� the deviation from single
exponential decay has been visible. However, for large relax-
ation times exponential decay for both the histogram and the
cumulative distribution function tail was observed in agree-
ment with the results obtained by Slanina and Lavicka for
the complete graph �25� and with Schulze �26� who got an
exponential decay on the square lattice by introducing both
local and global interactions.

In this paper we will not present the histogram of the
relaxation times. Instead we focus only on the tail of the
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FIG. 12. Scaling of the mean relaxation time with the system
size for the Stauffer et al. rule. Initial state consists of p randomly
distributed up-spins for two types of two-dimensional L�L
lattices—square �left panel� and triangular �right panel�. Similar
scaling is observed also for GD and KD. It is visible that the scaling
exponent for random initial conditions is p-dependent. Results are
averaged over 103 samples and the largest simulated lattice consists
of N=103�103=106 nodes.
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cumulative distribution function 1−CDF. We would like to
explain here our choice and persuade that such a choice gives
much more reliable results in estimating distributions. Usu-
ally, a histogram is used, because such a representation is
much more intuitive. However, such a representation, con-
trary to CDF, is not one-valued because we are free to choose
the number of intervals to which we divide all results. It can
be seen very often that the same results look different just
because of this not one-valued choice. Moreover, a statistics
�i.e., number of results that are represented by one point� in a
case of histogram is worse than in a case of CDF, which is
clearly visible on plots—in a case of CDF the plot is much
smoother. The last reason for which we choose CDF is the
following: The histogram is only an estimation of the prob-
ability distribution function. For all these reasons we decided
to focus on CDF.

In all three dynamics short and long time regimes are
observed. These two time regimes are much more visible if
we divide relaxation times by the lattice size �see Fig. 13�,
i.e., we plot the tail the cumulative distribution function of
relaxation time 1−CDF versus � /L2 instead of �. Interest-
ingly, results for the short time regime scale with the lattice
size with a simple exponent 2. The same exponent is valid
for all three dynamics on both square and triangular lattices.
It should be mentioned here that for one-dimensional outflow
�as well as inflow� dynamics curves for all lattice sizes col-
lapse to a single line if we divide the relaxation time by L2;
this result agrees with the scaling of the mean relaxation time
with lattice size ��L2.

The result obtained from the distribution for the relaxation
time is very intriguing and certainly needs deeper investiga-
tion which we leave for a future work.

VIII. CONCLUSIONS

In this paper we proposed a generalization of the one-
dimensional outflow dynamics �KD�. The rule was intro-
duced as a simplification of Galam dynamics �GD� proposed
in Ref. �12�. In a previous paper �13� we compared the re-
laxation from a random initial state consisting of p up-spins
under two outflow dynamics on the square lattice �Stauffer et
al. �SD� �12� and GD�. Here, similar to the previous paper,
we have investigated the mean relaxation time from an initial
state consisting of p up-spins. However, in this paper we
simulated all three types of outflow dynamics, GD, SD, and
KD, both on the square and triangular lattices. Moreover, we
took into account several types of initial configuration—
random, “stripes,” and “circle.”

Simulation results showed that the relaxations on both
lattices �square and triangular� are identical for all three out-
flow dynamics contrary to results obtained for two-states cel-
lular automaton �19� but in agreement with the results for
outflow dynamics on various complex networks �15�.

We have found the phase transition for all dynamics—for
p�0.5 the “all spins up” state is never reached, while for
p�0.5 this state is obtained with probability 1 �the same
result was obtained previously in Refs. �12,13� on the square
lattice�. Interestingly, in the critical point, GD is the fastest
dynamics and KD is definitely the slowest, while outside of
the critical point the situation is reversed. We have addressed
a very intriguing question—why is the dynamics which is the
slowest one in the critical point the fastest one outside this
point and vice versa? We connected this behavior with a
spatial structure which is created for different initial concen-
trations p of up-spins—for p�0.5 small compact isolated
clusters are created, while for p=0.5 an infinite cluster is
occurring. Starting from two types of ordered states, we have
shown that small round clusters are most stable under GD
contrary to infinite clusters �like stripes� which are most
stable for KD. Summarizing results for random, “stripes,”
and “circle” initial conditions, we have obtained the follow-
ing:

�KD � �SD � �GD

“stripes” for all p and random initial conditions for p=0.5,

�KD � �SD � �GD

random initial conditions for p=0.5, and

�KD � �SD 
 �GD

“circle” for p investigated.
Another interesting result has been obtained while look-

ing at the scaling laws. Both the analytic and numerical ap-
proaches in the case of the one-dimensional voter model
�1–3� lead to the conclusion that dependence between the
mean relaxation time � and the size of the system Ł can be
expressed by a simple scaling law ��L2. The same scaling
is also valid for relaxation in one dimension under zero-
temperature Glauber �inflow� dynamics as well as outflow
dynamics. On the contrary, for two dimensions even within
the outflow dynamics no single scaling law can be found—it
depends strongly on the initial configuration of the system.
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FIG. 13. Tail of the cumulative distribution function of the re-
laxation time 1−F �where F denotes CDF� vs � /L2 from a random
initial state consisting of p=0.5 up-spins for SD �top panels� and
KD �bottom panels� in a semilog scale are presented. The lattice
size runs from L=50 �lowest curve� to L=100 �uppermost curve�.
Two regimes—short and long time—are visible for both dynamics
in the case of square and triangular lattices. For the short time
regime all curves collapse to a single line if we divide the relaxation
time � by the lattice size N=L2. Analogous results are obtained for
GD.
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Probably the most intriguing, yet still preliminary, result
presented in this paper is connected with the distribution of
relaxation times. For one-dimensional outflow �as well as
inflow� dynamics curves for all lattice sizes collapse to a
single line if we divide the relaxation time by L2; this result
agrees with the scaling of the mean relaxation time with
lattice size ��L2. In the case of a two-dimensional system in
all three dynamics a short and a long time regime in the
distribution of relaxation times are observed. These two time
regimes are much more visible if we divide relaxation times
by the lattice size, i.e., we plot the tail of the cumulative

distribution function of relaxation time 1−CDF versus � /L2

instead of �. Interestingly, the results for the short time re-
gime scale with the lattice size with the same simple expo-
nent 2 as obtained for one-dimensional systems. These inter-
esting results certainly require further investigation.
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